# Interaction of polynuclear palladium (I) carbonyl carboxylates with gaseous NO: X-ray structure of eight-nuclear clusters $\mathrm{Pd}_{8}(\mu-\mathrm{CO})_{4}(\mu-\mathrm{OOCR})_{4}[\mu-\mathrm{N}(=\mathrm{O}) \mathrm{O}-]_{4}$ 

Oleg N. Shishilov ${ }^{\text {a, } *}$, Tatiana A. Stromnova ${ }^{\mathrm{a}, \ddagger}$, Andrei V. Churakov ${ }^{\text {a }}$, Lyudmila G. Kuz'mina ${ }^{\text {a }}$, Judith A.K. Howard ${ }^{\text {b }}$<br>${ }^{\text {a }}$ N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Science, Leninsky pr., 31, Moscow 119991, Russian Federation<br>${ }^{\mathrm{b}}$ Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, UK

## A R T I C L E I N F O

## Article history:

Received 27 November 2008
Received in revised form 15 December 2008
Accepted 17 December 2008
Available online 25 December 2008

## Keywords:

Palladium cluster
Carbonyl nitrite
X-ray structure
NO disproportionation


#### Abstract

The reaction of palladium carbonyl carboxylates $\mathrm{Pd}_{6}(\mathrm{CO})_{6}(\mathrm{RCOO})_{6}$ with gaseous nitrogen monoxide was investigated. These clusters were found to promote the NO disproportionation into $\mathrm{N}_{2}$ and $\mathrm{NO}_{2}$ under mild conditions. The reaction is accompanied with the oxidation of coordinated carbon monoxide. These processes result in unusual eight-nuclear palladium carboxylate clusters $\mathrm{Pd}_{8}(\mathrm{CO})_{4}\left(\mathrm{NO}_{2}\right)_{4}(\mathrm{RCOO})_{8}$.


© 2009 Elsevier B.V. All rights reserved.

## 1. Introduction

Transformations of nitric monoxide within the coordination sphere of transition metal complexes lead to the formation of species such as $\mathrm{NO}_{2}, \mathrm{~N}_{2}$, and $\mathrm{N}_{2} \mathrm{O}$ which are of great importance for biological and environmental processes [1]. The following reaction represents an important way for the purification of exhaust industrial gases and exhaust gases of combustion engines [2]:

$$
\mathrm{CO}+\mathrm{NO} \rightarrow \mathrm{CO}_{2}+\mathrm{N}_{2} \mathrm{O}+\mathrm{N}_{2}
$$

The reaction is very slow at room temperature but accelerates over catalysts based on platinum metals including palladium [3]. Studying the chemical behaviour of polynuclear carbonyl and nitrosyl palladium complexes should allow us to understand the mechanism of the catalytic effect.

Palladium carbonyl carboxylates $\mathrm{Pd}_{6}(\mu-\mathrm{CO})_{6}\left(\mu-\mathrm{RCO}_{2}\right)_{6}(\mathbf{1}: \mathrm{R}=$ ${ }^{\text {tert }} \mathrm{Bu}(\mathbf{a}),{ }^{i} \operatorname{Pr}(\mathbf{b})$, and $\left.{ }^{n} \operatorname{Pr}(\mathbf{c})\right)$ have a planar cyclic hexagonal metal core with alternating pairs of bridging carbonyl and carboxylate ligands [4]. Herein, we describe our investigation of the reaction of clusters 1 with nitric monoxide which leads to palladium carbonyl nitrite carboxylate clusters.

[^0]
## 2. Results and discussion

A vast majority of nitrosyl clusters can be obtained from the reaction of carbonyl compounds with nitrosonium cations or nitrite anions as a source of the NO ligand. The direct reaction with gaseous NO usually leads to the decomposition of the carbonyl cluster frameworks [5]. When neutral NO is used, the main problem is that the resultant complex decomposes because NO should donate three electrons to metal frames, one of them being responsible for metal-metal bond cleavage. We have found that the reaction of clusters 1 proceeds quite differently. Upon treatment of complexes 1 with gaseous nitric monoxide at $50^{\circ} \mathrm{C}$ for $4-5 \mathrm{~h}$ or at r.t. for 2-3 days, the color of the solution changed from bright yellow to dark vinous. In this case, partial decomposition of the complexes into Pd black was observed, and isolated Pd-containing products involve $\mathrm{NO}_{2}$-groups. According to elemental analysis, these complexes have the total composition $\mathrm{Pd}_{2}(\mathrm{CO})\left(\mathrm{NO}_{2}\right)\left(\mathrm{RCO}_{2}\right)_{2}$ :

$$
\begin{aligned}
\mathrm{Pd}_{6}(\mathrm{CO})_{6}\left(\mathrm{RCO}_{2}\right)_{6}+\mathrm{NO} \rightarrow & \mathrm{Pd}_{8}(\mathrm{CO})_{4}\left(\mathrm{NO}_{2}\right)_{4}\left(\mathrm{RCO}_{2}\right)_{8} \\
& +\ldots \mathrm{R}={ }^{\text {tert }} \mathrm{Bu},{ }^{i} \mathrm{Pr},{ }^{n} \mathrm{Pr}
\end{aligned}
$$

The IR-spectra of the complexes display bands of stretching vibrations of carbonyls (1944-1936 $\mathrm{cm}^{-1}$ ), nitrites ( 1560 and 1304$1312 \mathrm{~cm}^{-1}$ ) and carboxylates (1544-1548, 1404-1412 $\mathrm{cm}^{-1}$ asymmetric and symmetric). Their structures were determined by X-ray crystallography. In general, the molecular structure of $\mathrm{Pd}_{8}(\mu-\mathrm{CO})_{4}\left(\mu-\mathrm{NO}_{2}\right)_{4}\left(\mu-\mathrm{RCO}_{2}\right)_{8}\left(\mathbf{2}: \mathrm{R}={ }^{\text {tert }} \mathrm{Bu}(\mathbf{a}),{ }^{i} \operatorname{Pr}(\mathbf{b})\right.$, and $\left.{ }^{n} \operatorname{Pr}(\mathbf{c})\right)$ consists of two bent four-member palladium chains. The ends of


Fig. 1. The molecular structure of $\mathrm{Pd}_{8}(\mu-\mathrm{CO})_{4}\left(\mu-\mathrm{OOCCMe}_{3}\right)_{8}\left(\mu-\mathrm{NO}_{2}\right)_{4}$. Hydrogen atoms and $t$-Bu groups are omitted for clarity.


Fig. 2. Cluster-benzene chains in the structure 2a. Hydrogen atoms and ${ }^{t} \mathrm{Bu}$ groups are omitted for clarity. Thin lines indicate the distances between the centers of $\mathrm{Pd}_{2}(\mathrm{CO})_{2}$ units and benzene molecules.
the opposite metal chains are connected by four nitrito-groups forming the entire $\mathrm{Pd}_{8}$ cluster. All nitrito-groups are coordinated by central nitrogen atoms to one metal chain and by terminal oxygen atoms to another. Meanwhile, all terminal Pd atoms capture one N atom and one O atom from bridging nitrito- $\mathrm{N}, \mathrm{O}$ ligands.

Earlier we described complex $\mathrm{Pd}_{8}(\mu-\mathrm{CO})_{4}\left(\mu-\mathrm{NO}_{2}\right)_{4}\left(\mu^{\text {tert }} \mathrm{BuCO}_{2}\right)_{8}$ (2a) [6]. Herein, we report another crystal modification of 2a
(Fig. 1). The structure of $\mathbf{2 a}$ also consists of two bent four-membered palladium chains, $\operatorname{Pd}(1)-\operatorname{Pd}(4)$ and $\operatorname{Pd}(5)-\operatorname{Pd}(8)$. Both metal chains are planar within $0.0592(4) \AA$ and are almost perpendicular to each other $\left(88.94(1)^{\circ}\right)$. In these chains, the central metal pairs $\operatorname{Pd}(2)-\mathrm{Pd}(3)$ and $\mathrm{Pd}(6)-\mathrm{Pd}(8)$ are linked by two approximately symmetrical $\mu_{2}-\mathrm{CO}$ ligands forming near planar $\mathrm{Pd}_{2}(\mathrm{CO})_{2}$ fragments, while the terminal palladium atoms are linked to central


Fig. 3. The molecular structure of $\mathrm{Pd}_{8}(\mu-\mathrm{CO})_{4}(\mu-\mathrm{OOCCHMe} 2)_{8}\left(\mu-\mathrm{NO}_{2}\right)_{4}$. Hydrogen atoms and ${ }^{i} \operatorname{Pr}$ groups are omitted for clarity.


Fig. 4. Chains in the structure of $\mathbf{2 b}$. Hydrogen atoms and Me groups are omitted for clarity. Thin lines indicate Pd-Pd interactions.
atoms by $\mu_{2}$-pivalato groups. The coordination environment of all Pd atoms is square-planar with cis $\mathrm{X}-\mathrm{Pd}-\mathrm{Y}(\mathrm{X}, \mathrm{Y}=\mathrm{C}, \mathrm{N}, \mathrm{O})$ angles ranging within $84.6(2)-94.4(3)^{\circ}$. The $\mathrm{Pd}-\mathrm{Pd}$ distances range from 2.6723(8) to 2.6747(8) $\AA$ for the $\mathrm{Pd}_{2}(\mu-\mathrm{CO})_{2}$ fragment and from 2.8479 (8) to $2.8853(8) \AA$ for the $\mathrm{Pd}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CR}\right)_{2}$ unit Table 1. This results from different sterical requirements of bridging CO and carboxylate ligands. In general, the geometry of $\mathrm{Pd}_{2}\left(\mu_{2}-\mathrm{CO}\right)_{2}$ and $\mathrm{Pd}_{2}\left(\mu_{2}-\mathrm{O}_{2} \mathrm{CMe}_{3}\right)_{2}$ frames is close to that found previously in the structures of the parent carbonyl carboxylate Pd clusters [4]. All four $\mathrm{Pd}-\mathrm{O}-\mathrm{N}(=\mathrm{O})-\mathrm{Pd}$ units are planar within $0.155(5)$ Å. All $\mu-\mathrm{N}$ and $\mu-\mathrm{O}$ atoms may be treated as $s p^{2}$-hybridizied, since the angles around these atoms are close to $120^{\circ}\left(115.4(6)-124.3(5)^{\circ}\right)$.

In crystal, $\mathrm{Pd}_{8}$ clusters are combined in chains running along the $a b$-diagonal. In a chain, the adjacent clusters are linked by centrosymmetric solvate benzene molecules (Fig. 2). The intermolecular distances between the centers of $\mathrm{Pd}_{2}(\mathrm{CO})_{2}$ units and benzene molecules are 3.063 and $3.130 \AA$. These values indicate the presence of strong $\pi-\pi$ stacking interactions. We observed the same motif previously in the structures of the parent carbonyl carboxylates $\mathbf{1 a , b}$ $\mathrm{Pd}_{6}(\mathrm{CO})_{6}\left(\mathrm{RCO}_{2}\right)_{6} \cdot \mathrm{C}_{6} \mathrm{H}_{6}\left(\mathrm{R}=\mathrm{CMe}_{3}, \mathrm{CHMe}_{2}\right)[4]$. The chains are separated by wide channels filled with additional solvent benzene and hexane molecules lying in general positions. It should be noted that all ${ }^{t} \mathrm{Bu}$ groups are directed towards these channels. The observed high thermal rotation motion of alkyl substituents may result from such a specific crystal packing.

The presented structure of 2a may be treated as isostructural with the previously determined one [7]. The only difference is that all solvent toluene molecules in the previous structure are replaced by benzene molecules.

The structure of the new complex $\mathrm{Pd}_{8}(\mu-\mathrm{CO})_{4}\left(\mu-\mathrm{NO}_{2}\right)_{4}\left(\mu-{ }^{i} \mathrm{Pr}-\right.$ $\left.\mathrm{CO}_{2}\right)_{8}(\mathbf{2 b})$ was also determined by the X-ray diffraction analysis (see Fig. 3). The structure of metal core in $\mathbf{2 b}$ is very similar to that found for $\mathbf{2 a}$. The crystal of $\mathbf{2 b}$ does not contain any solvent molecules.

In the crystal of 2b, short intermolecular Pd-Pd interactions combine the adjacent molecules in chains parallel to the ac-diagonal (Fig. 4). These interactions are formed by the parallel $\mathrm{Pd}_{2}(\mathrm{CO})_{2}$ units. The Pd-Pd distance is equal to $3.173(1)$ Å. We observed the same type of intermolecular metal-metal contacts previously in the structure of the parent cluster $\mathbf{1 b} \mathrm{Pd}_{6}(\mathrm{CO})_{6}\left(\mathrm{Me}_{2} \mathrm{HCCO}_{2}\right)_{6} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$ [4a].

On treatment of $\mathbf{2 b}$ with NO at $50^{\circ} \mathrm{C}$, we did increase the yield of complex $\mathbf{2 b}$ and reduce the reaction time. Under these conditions, a partial decomposition of the reaction mixture into palladium black was observed. The reaction time was only 5 h , and the yield was about $10 \%$. Analogous reaction of 1c under the same conditions resulted in $\mathrm{Pd}_{8}(\mu-\mathrm{CO})_{4}\left(\mu-\mathrm{NO}_{2}\right)_{4}\left(\mu-{ }^{n} \operatorname{PrCO}_{2}\right)_{8}$ (2c) which was also characterized by X-ray crystallography (see Fig. 5). The molecular structure of $\mathbf{2 c}$ is also very similar to that of $\mathbf{2 a}$ and $\mathbf{2 b}$.

In structure 2c, as in structure 2b, the adjacent clusters are combined in chains by analogous short Pd-Pd interactions (3.117(1) and 3.188(1) Å). However, 2b and 2c are not isostructural.

The most interesting feature is the simultaneous presence of CO and $\mathrm{NO}_{2}$ - ligands in clusters $\mathbf{2}$. According to the literature data, the reaction of transition metal carbonyl complexes with nitric monoxide can proceed in different pathways:


Fig. 5. The molecular structure of $\mathrm{Pd}_{8}(\mu-\mathrm{CO})_{4}\left(\mu-\mathrm{OOCCH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)_{8}\left(\mu-\mathrm{NO}_{2}\right)_{4}$. Hydrogen atoms and $n$ - Pr groups are omitted for clarity.

Table 1
Selected bond lengths ( $\AA$ ) for 2a, 2b and 2c.

|  | 2a | 2b | 2c |
| :--- | :--- | :--- | :--- |
| $\operatorname{Pd}(1)-\operatorname{Pd}(2)$ | $2.8479(8)$ | $2.8993(11)$ | $2.8942(9)$ |
| $\operatorname{Pd}(2)-\operatorname{Pd}(3)$ | $2.6723(8)$ | $2.6718(11)$ | $2.6769(11)$ |
| $\operatorname{Pd}(3)-\operatorname{Pd}(4)$ | $2.8699(8)$ | $2.9118(11)$ | $2.8943(10)$ |
| $\operatorname{Pd}(5)-\operatorname{Pd}(6)$ | $2.8853(8)$ | $2.8805(11)$ | $2.9114(9)$ |
| $\operatorname{Pd}(6)-\operatorname{Pd}(7)$ | $2.6747(8)$ | $2.6688(12)$ | $2.6901(10)$ |
| $\operatorname{Pd}(7)-\operatorname{Pd}(8)$ | $2.8522(8)$ | $2.9026(11)$ | $2.8671(10)$ |
|  |  |  |  |
| $\mathrm{Pd}-\mathrm{C}$ | $1.964(9)-1.987(8)$ | $1.944(10)-2.012(11)$ | $1.962(10)-2.000(10)$ |
| $\mathrm{Pd}-\mathrm{N}$ | $1.974(7)-1.989(7)$ | $1.948(8)-1.993(9)$ | $1.963(8)-1.992(7)$ |
| $\mathrm{Pd}-\mathrm{O}(-\mathrm{N})$ | $2.005(6)-2.035(5)$ | $2.016(7)-2.034(7)$ | $2.011(7)-2.044(7)$ |
| $\mathrm{Pd}-$ | $1.987(5)-2.133(5)$ | $1.977(7)-2.119(8)$ | $1.986(7)-2.129(7)$ |
| $\mathrm{O}($ carboxyl $)$ |  |  |  |
| $\mathrm{C}-\mathrm{O}($ carbonyl $)$ | $1.133(9)-1.160(9)$ | $1.111(12)-1.146(12)$ | $1.132(12)-1.171(11)$ |
| $\mathrm{N}-\mathrm{O}($ terminal $)$ | $1.230(9)-1.274(9)$ | $1.203(11)-1.250(10)$ | $1.210(10)-1.241(10)$ |
| $\mathrm{N}-\mathrm{O}(-\mathrm{Pd})$ | $1.217(8)-1.246(8)$ | $1.268(10)-1.298(9)$ | $1.271(10)-1.286(9)$ |

1. The partial or full replacement of CO by NO [7].
2. The replacement of CO by NO followed by a nitrite complex formation. In these cases, the nitrite complexes never contain CO [8].
3. The replacement of CO by NO with the nitrite nitrosyl rather than carbonyl complex formation [9].

The nitrite carbonyl complex formation has been observed only once [10]. The reason is that carbon monoxide is a typical reducing agent, whereas the nitrite anion possesses strong oxidizing properties. Therefore, CO reduces $\mathrm{NO}_{2}$ into NO , whereas $\left[\mathrm{NO}_{2}\right]$ is a source of nitrosyl ligands of a high-usage (see, for example, [11]). According to [12], CO reduces $\mathrm{NO}_{2}$ and NO to $\mathrm{N}_{2} \mathrm{O}$ rather than to $\mathrm{N}_{2}$. We determined the composition of the gaseous phase with GC and found that the total amounts of gases after 72 h are the following: $0.15-0.16 \mathrm{~mol} \mathrm{CO} 2 / 1 \mathrm{~mol} \mathrm{Pd}, 0.03-0.035 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O} / 1 \mathrm{~mol} \mathrm{Pd}$, and $1.1-1.3 \mathrm{~mol}_{2} / 1 \mathrm{~mol}$ Pd. Thus, the main product of $\mathrm{NO} / \mathrm{NO}_{2}$ reduction is molecular nitrogen, and clusters $\mathbf{1}$ being the first complexes that react with NO yielding $\mathrm{N}_{2}$.

Thus, we detected $\mathrm{N}_{2}$ in gaseous phase as a product of NO reduction and found $\mathrm{NO}_{2}$-ligand in clusters 2 as a product of NO oxidation. This means that the NO disproportionation into $\mathrm{N}_{2}$ and $\mathrm{NO}_{2}$ proceeds on palladium clusters.

## 3. Conclusions

The reaction of palladium carbonyl carboxylates with gaseous nitric monoxide is accompanied by the oxidation of coordinated CO and the disproportionation of NO into $\mathrm{N}_{2}$ and $\mathrm{NO}_{2}$ under mild conditions. This reaction resulted in eight-nuclear nitrite clusters of the novel type $\mathrm{Pd}_{8}(\mu-\mathrm{CO})_{4}\left(\mu-\mathrm{NO}_{2}\right)_{4}\left(\mu-\mathrm{RCO}_{2}\right)_{8}$, simultaneously containing potentially oxidative and reductive ligands. Up to date, these complexes are the largest palladium carboxylate clusters characterized by an X-ray analysis.

## 4. Experimental

### 4.1. General techniques and procedures

All organic solvents and liquid organic reagents were purified and dried according to the standard procedures. Microanalyses were performed on a Carlo Erba Analyzer CHND-OEA 1108. The Carl Zeiss SPECORD-M82 was used for IR-spectroscopy. Cyclo-$\left[\mathrm{Pd}_{4}(\mu-\mathrm{CO})_{4}(\mu-\mathrm{OOCMe})_{4}\right]$ was prepared according to a published procedure [13] by reductive carbonylation of palladium diacetate in glacial acetic acid. Palladium carbonyl carboxylates $\mathrm{Pd}_{6}{ }^{-}$ $(\mu-\mathrm{CO})_{6}\left(\mu-\mathrm{RCO}_{2}\right)_{6}$ were prepared according to a published
procedure [4]. Solid carboxylic acids were commercially supplied. Synthesis of nitric monoxide was carried out according to a standard method by reduction of $\mathrm{NaNO}_{2}$ by KI in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in water solution.

### 4.2. Syntheses of $\mathrm{Pd}_{8}\left(\mu-\mathrm{NO}_{2}\right)_{4}(\mu-\mathrm{CO})_{4}\left(\mu-{ }^{n} \operatorname{PrCO}\right)_{8}$

$\mathrm{Pd}_{6}(\mathrm{CO})_{6}\left(\mathrm{PrCO}_{2}\right)_{6}(220 \mathrm{mg})$ was first dissolved in 30 ml benzene and filtered. The solution was placed in a 100 ml two-necked round-bottomed flask and was stirred by a magnetic stirrer under NO atmosphere at $50^{\circ} \mathrm{C}$ for 5 h . After that NO was removed, and the dark vinous solution was filtered to remove metal palladium. The filtrate was evaporated on an oil pump to $5-7 \mathrm{ml}$, benzene or toluene and hexane were added up to dimness. The crystals were obtained by storing the solution in a refrigerator at $4^{\circ} \mathrm{C}$. Crystals were filtered off and dried under vacuum. The yield was $10 \%$ based on palladium. Element Anal. calc. for $\mathrm{Pd}_{8}\left(\mathrm{NO}_{2}\right)_{4}(\mathrm{CO})_{4}(\mathrm{Pr}-$ $\left.\mathrm{CO}_{2}\right)_{8}: \mathrm{C}, 23.44 ; \mathrm{H}, 3.04 ; \mathrm{N}, 3.04$. Found: C, 23.86; H, 3.12; N, 3.02\%. IR-spectrum: 1944, 1560, 1544, 1496, 1404, 1312, 1200, $668 \mathrm{~cm}^{-1}$.

Single crystals of $\mathrm{Pd}_{8}\left(\mathrm{NO}_{2}\right)_{4}(\mathrm{CO})_{4}\left({ }^{n} \mathrm{PrCO}_{2}\right)_{8}$ were obtained from benzene/hexane mixture.

### 4.3. Synthesis of $\mathrm{Pd}_{8}\left(\mu-\mathrm{NO}_{2}\right)_{4}(\mu-\mathrm{CO})_{4}\left(\mu-\mathrm{PrCO}_{2}\right)_{8}$

$\left.\mathrm{Pd}_{6}(\mathrm{CO})_{6}{ }^{( }{ }^{i} \mathrm{PrCO}_{2}\right)_{6}(220 \mathrm{mg})$ was first dissolved in 30 ml toluene and filtered. The solution was placed in a 100 ml two-necked round-bottomed flask and was stirred by a magnetic stirrer under NO atmosphere at $50^{\circ} \mathrm{C}$ for 4 h . After that NO was removed, and the dark vinous solution was filtered to remove metal palladium. The filtrate was evaporated on an oil pump to $3-4 \mathrm{ml}$, toluene and hexane were added up to dimness. The crystals were obtained by storing the solution in a refrigerator at $4^{\circ} \mathrm{C}$, and were filtered off and dried under vacuum. The yield is $10 \%$ based on palladium. Element Anal. calc. for $\mathrm{Pd}_{8}\left(\mathrm{NO}_{2}\right)_{4}(\mathrm{CO})_{4}\left(\mathrm{OCOCHMe}_{2}\right)_{8}: \mathrm{C}, 23.44 ; \mathrm{H} 3.04$; N, 3.04. Found: C, 23.91; H, 3.28; N, 2.97\%. IR-spectrum: 1944, $1560,1548,1496,1412,1304,1200,1096,688,668 \mathrm{~cm}^{-1}$.

Single crystals of $\mathrm{Pd}_{8}\left(\mathrm{NO}_{2}\right)_{4}(\mathrm{CO})_{4}\left({ }^{i} \mathrm{PrCO}_{2}\right)_{8}$ were crystallized from benzene/hexane mixture.

### 4.4. Syntheses of $\mathrm{Pd}_{8}\left(\mu-\mathrm{NO}_{2}\right)_{4}(\mu-\mathrm{CO})_{4}\left(\mu-\text {-tert }^{\text {t }} \mathrm{BuCO}_{2}\right)_{8}$

$\left.\mathrm{Pd}_{6}(\mathrm{CO})_{6}{ }^{\text {tert }} \mathrm{BuCO}_{2}\right)_{6}(600 \mathrm{mg})$ was first dissolved in 100 ml benzene and filtered. The solution was placed in a 250 ml three-necked round-bottomed flask and was stirred by a magnetic stirrer under NO atmosphere for 72 h . After that NO was removed, and dark vinous solution was filtered to remove small amount of impurities. The filtrate was evaporated on an oil pump to $5-7 \mathrm{ml}$, benzene or toluene and hexane were added to precipitate vinous powder, which was filtered off and dried under vacuum. The crystals of $\mathrm{Pd}_{8}\left(\mathrm{NO}_{2}\right)_{4}(\mathrm{CO})_{4}\left({ }^{\text {tert }} \mathrm{BuCO}_{2}\right)_{8}$ were obtained by storing the solution in a refrigerator at $4^{\circ} \mathrm{C}$. The yield is $12 \%$ based on palladium.

### 4.5. Gas chromatography

Gas chromatography was performed on a 3700 instrument for $\mathrm{N}_{2} \mathrm{O}$ and $\mathrm{CO}_{2}$ analyses equipped with a Porapak Q packed column ( $l=1 \mathrm{~m}$ ) and a LHM-80 instrument for $\mathrm{N}_{2}, \mathrm{CO}$ and NO analyses equipped with molecular sieve packed column $(l=3 \mathrm{~m})$. Both instruments were equipped with a thermal conductivity (TC) detector. The column flow rate of He carrier gas was $30 \mathrm{ml} / \mathrm{h}$ at $25^{\circ} \mathrm{C}$.

### 4.6. Crystal structure determination

The experimental intensities for compounds $\mathbf{2 a}, \mathbf{2 b}$ and $\mathbf{2 c}$ were measured on a Bruker SMART CCD diffractometer (graphite mono-

Table 2
Crystal data, data collection, structure solution and refinement parameters for 2a, 2b and $\mathbf{2 c}$.

| Empirical formula | $\begin{aligned} & \mathrm{C}_{62} \mathrm{H}_{94} \mathrm{~N}_{4} \mathrm{O}_{28} \mathrm{Pd}_{8} \\ & (2 \mathrm{a}) \end{aligned}$ | $\begin{aligned} & \mathrm{C}_{36} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{28} \mathrm{Pd}_{8} \\ & \text { (2b) } \end{aligned}$ | $\begin{aligned} & \mathrm{C}_{36} \mathrm{H}_{56} \mathrm{~N}_{4} \mathrm{O}_{28} \mathrm{Pd}_{8} \\ & \text { (2c) } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Formula weight | 2194.61 | 1844.05 | 1844.05 |
| Colour, habit | Orange block | Yellow prism | Yellow needle |
| Crystal size/mm ${ }^{3}$ | $0.15 \times 0.06 \times 0.04$ | $0.08 \times 0.06 \times 0.06$ | $0.30 \times 0.05 \times 0.05$ |
| Crystal system | Monoclinic | Monoclinic | Triclinic |
| Space group | $P 2_{1} / \mathrm{n}$ | $P 2_{1} / \mathrm{n}$ | $P-1$ |
| Unit cell dimensions |  |  |  |
| $a \mid \AA$ ¢ | 20.2315(5) | 12.8280(4) | 11.6680(4) |
| $b / \AA$ ¢ | 19.2364(5) | 22.1844(8) | 12.0687(5) |
| $c \mid \AA$ ¢ | 23.9185(6) | 20.0187(7) | 21.5554(8) |
| $\alpha /\left({ }^{\circ}\right)$ | 90 | 90 | 101.623(2) |
| $\beta /\left({ }^{\circ}\right)$ | 114.364(1) | 98.172(1) | 102.066(2) |
| $\gamma /\left({ }^{\circ}\right)$ | 90 | 90 | 98.262(2) |
| Volume/ $\AA^{3}$ | 8479.6(4) | 5639.1(3) | 2852.22(19) |
| Z | 4 | 4 | 2 |
| $\begin{aligned} & \text { Density } \\ & \quad(\text { calculated }) / \\ & \mathrm{g} \mathrm{~cm}^{-3} \end{aligned}$ | 1.719 | 2.172 | 2.147 |
| Absorption coefficient/ $\mathrm{mm}^{-1}$ | 1.728 | 2.576 | 2.547 |
| $F(000)$ | 4344 | 3568 | 1784 |
| $\theta$ Range for data collection/( ${ }^{\circ}$ ) | 1.41-27.00 | 1.84-28.00 | 0.99-27.50 |
| Index ranges | $-21 \leqslant h \leqslant 25$ | $-16 \leqslant h \leqslant 16$ | $-13 \leqslant h \leqslant 15$ |
|  | $-24 \leqslant k \leqslant 24$ | $-29 \leqslant k \leqslant 29$ | $-15 \leqslant k \leqslant 13$ |
|  | $-29 \leqslant l \leqslant 30$ | $-17 \leqslant l \leqslant 26$ | $-28 \leqslant l \leqslant 27$ |
| Reflections collected | 52176 | 43079 | 17161 |
| Independent | 18505 | 13590 | 12690 |
| reflections | [ $\left.R_{\text {int }}=0.0827\right]$ | [ $R_{\text {int }}=0.1075$ ] | [ $\left.R_{\text {int }}=0.0497\right]$ |
| Data/restraints/ parameters | 18505/0/734 | 13590/1/621 | 12690/12/695 |
| Final $R$ indices $[I>2 \sigma(I)]$ | $\begin{aligned} & R_{1}=0.0606, \\ & w R_{2}=0.1227 \end{aligned}$ | $\begin{aligned} & R_{1}=0.0656 \\ & w R_{2}=0.1554 \end{aligned}$ | $\begin{aligned} & R_{1}=0.0598 \\ & w R_{2}=0.1406 \end{aligned}$ |
| $R$ indices (all data) | $\begin{aligned} & R_{1}=0.1124, \\ & w R_{2}=0.1366 \end{aligned}$ | $\begin{aligned} & R_{1}=0.1497 \\ & w R_{2}=0.1831 \end{aligned}$ | $\begin{aligned} & R_{1}=0.1200, \\ & w R_{2}=0.1597 \end{aligned}$ |
| Goodness-of-fit on $F^{2}$ | 1.028 | 0.844 | 0.951 |
| Largest diffraction peak/hole (e $\AA^{-3}$ ) | 2.004/-0.932 | 2.108/-1.138 | 2.608/-1.665 |

chromatized Mo $\mathrm{K} \alpha$ radiation, $\lambda=0.71073 \AA$ ) at 120 K . The structures were solved by direct methods [14] and refined by full matrix least-squares on $F^{2}[15]^{18}$ with anisotropic thermal parameters for all non-hydrogen atoms except for all terminal methyl groups in 2a and $\mathbf{2 b}$. These methyl groups showed high thermal motion due to possible rotation along $\mathrm{O}_{2} \mathrm{C}-\mathrm{CMe}_{n}$ bonds. In 2a, carbon atoms of solvent benzene and hexane molecules were refined with isotropic thermal parameters. In 2c, two ${ }^{n} \mathrm{Pr}$ groups were found to be disordered over two positions with occupancies ratio of 0.60/0.40and $0.65 / 0.35$ and were refined isotropically. All H atoms were placed in the calculated positions and were refined using a riding model. Crystal data, data collection, structure solution and refinement
parameters are listed in Table 2. Poor crystallinity of all the investigated samples resulted in relatively high values of final $R$ indices and residual electron density.

## Acknowledgement

We are grateful to the Russian Foundation for Basic Research (the project No. 07-03-00682).

## Appendix A. Supplementary data

CCDC-278722 and - 278723 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jorganchem.2008.12.045.

## References

[1] (a) See for example T. Nagano, Chem. Rev. 102 (2002) 1235;
(b) I.M. Wasser, S. Vries, P. Moënne-Loccoz, I. Schröder, K.D. Karlin, Chem. Rev. 102 (2002) 1200;
(c) J.A. McCleverty, Chem. Rev. 104 (2004) 403. and references therein..
[2] M. Shelef, G.W. Graham, Catal. Rev.-Sci. Eng. 36 (3) (1994) 433.
[3] (a) W.B. Hughes, J. Chem. Soc., Chem. Commun. 1126 (1969);
(b) P.J. Gans, Chem. Soc. A 943 (1967);
(c) M. Rossi, A. Sacco, J. Chem. Soc., Chem. Commun. 694 (1971);
(d) D. Gwost, K.G. Caulton, Inorg. Chem. 13 (1974) 414.
[4] (a) T.A. Stromnova, O.N. Shishilov, L.I. Boganova, N.A. Minaeva, A.V. Churakov, L.G. Kuz'mina, J.A.K. Howard, Russ. J. Inorg. Chem. 50 (2) (2005) 179;
(b) T.A. Stromnova, O.N. Shishilov, M.V. Dayneko, K.Yu. Monakhov, A.V. Churakov, L.G. Kuz'mina, J.A.K. Howard, J. Organomet. Chem. 691 (2006) 3730.
[5] W.L. Gladfelter, Adv. Organomet. Chem. 24 (1985) 41. and references therein..
[6] T.A. Stromnova, O.N. Shishilov, A.V. Churakov, L.G. Kuz'mina, J.A.K. Howard, J. Chem. Soc., Chem. Commun. 45 (2007) 4800.
[7] (a) W. Hieber, H.Z. Beutner, Anorg. Allg. Chem. 320 (1963) 101;
(b) N. Tsumori, Q. Xu, Inorg. Chem. 42 (2003) 4519.
[8] (a) S.C. Srivastava, A.K. Shrimal, P. Tiwari, Polyhedron 11 (1992) 1181; (b) R.K. Afshar, A.K. Patra, E. Bill, M.M. Olmstead, P.K. Mascharak, Inorg. Chem. 45 (2006) 3774.
[9] T.W. Hayton, P. Legzdins, W.B. Sharp, Chem. Rev. 102 (2002) 935.
[10] T. Chihara, K. Sawamura, H. Ikezawa, H. Ogawa, H. Wakatsuki, Organometallics 15 (1996) 415.
[11] (a) R.E. Stevens, D.E. Fjare, W.L.J. Gladfelter, Organomet. Chem. 347 (1988) 373;
(b) R.J. Clark, S.E. Whiddon, R.E. Serfass, J. Organomet. Chem. 11 (1968) 637;
(c) B.F.G. Johnson, J. Lewis, J. Chem. Soc., Dalton Trans. (1983) 2447.
[12] (a) K.M. Kadish, V.A. Adamian, E.V. Caemelbecke, Z. Tan, P. Tagliatesta, P. Bianco, T. Boschi, G.-B. Yi, M.A. Khan, G.B. Richter-Addo, Inorg. Chem. 35 (1996) 1343;
(b) D.S. Bohle, P.A. Goodson, B.D. Smith, Polyhedron 15 (1996) 3147;
(c) G.-B. Yi, M.A. Khan, G.B. Richter-Addo, J. Chem. Soc., Chem. Commun. 2045 (1996);
(d) S.J. Hodge, L.-S. Wang, M.A. Khan, V.G. Young, G.B. Richter-Addo, J. Chem. Soc., Chem. Commun. (1996) 2283.
[13] I.I. Moiseev, T.A. Stromnova, M.N. Vargaftik, G.Ja. Mazo, L.G. Kuz'mina, Yu.T. Struchkov, J. Chem. Soc., Chem. Commun. 27 (1978).
[14] G.M. Sheldrick, Acta Crystallogr. A A46 (1990) 467.
[15] G.M. Sheldrick, Shelxl-97. Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.


[^0]:    * Corresponding author.

    E-mail addresses: oshishilov@gmail.com (O.N. Shishilov), j.a.k.howard@durham. ac.uk (J.A.K. Howard).

    * Deceased.

